课外天地 李树青学习天地信息检索原理课件 → [转帖]复杂网络入门最佳资料:英文经典综述合集


  共有22493人关注过本帖树形打印复制链接

主题:[转帖]复杂网络入门最佳资料:英文经典综述合集

帅哥哟,离线,有人找我吗?
admin
  1楼 博客 | 信息 | 搜索 | 邮箱 | 主页 | UC


加好友 发短信 管理员
等级:管理员 帖子:1949 积分:26803 威望:0 精华:34 注册:2003/12/30 16:34:32
[转帖]复杂网络入门最佳资料:英文经典综述合集  发帖心情 Post By:2017/8/11 14:58:30 [只看该作者]

怎么进入复杂网络或者网络科学这个领域?

从我自己的经验来说,读优秀的综述论文是进入一个方向最便捷的途径。

我曾经写过一篇文章,叫做《复杂网络入门读物》,实际上是以前中英文综述的一个综述。在一个很细分的领域里拥有40000+的阅读量,很多人认识我恐怕是因为看了这个博客。

现在,复杂网络又往前走了五年,我想从五个方面为大家梳理一下最重要的参考资料——这实际上也是服务我和荣智海下半年的一门《网络科学导论》课,以及我们实验室的研究生和本科生。分别是全球重要的综述,中文快速入门的综述,英文和中文的书籍,以及领域突破性的论文。有一些要花的时间非常长,而且可能超过了我的能力,我只能尽力而为了。

那什么是重要的英文综述呢?

在做选择的时候,我只能秉承两个简单的原则:

(1)发表在大家公认的顶尖杂志上,例如物理学的三大综述期刊(Rev. Mod. Phys., Phys. Rep. 和Adv. Phys.),以及Nature、NaturePhysics、Science和Nature Reviews系列上的综述论文;

(2)发表后引用超过1000次的论文(本文的引用数据来自Google Scholar,截止到解放军建军90周年)。

有些综述论文我个人特别喜欢,例如最近在J. Complex Networks和我过Nat. Sci. Rev.上的一些工作。但是为了避免带入太多个人色彩,我都没有选入。如果这些论文足够好,我相信很快就会引用超过1000次。

综合性综述
(往往包含结构特征、演化建模和动力学)

[Albert2002] Albert, R., &Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviewsof Modern Physics, 74(1), 47. [Cited 18689 times]

[Dorogovtsev2002] Dorogovtsev, S.N., & Mendes, J. F. (2002). Evolution of networks. Advances in Physics, 51(4),1079-1187. [Cited 3234 times]

[Newman2003] Newman, M. E. J.(2003). The structure and function of complex networks. SIAMReview, 45(2), 167-256. [Cited 16020 times]

[Boccaletti2006] Boccaletti, S.,Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complexnetworks: Structure and dynamics. Physics Reports, 424(4), 175-308.[Cited 7457 times]

[Dorogovtsev2008] Dorogovtsev, S.N., Goltsev, A. V., & Mendes, J. F. (2008). Critical phenomena in complexnetworks. Reviews of Modern Physics, 80(4), 1275. [Cited 1426 times]

网络结构特征

[Strogatz2001] Strogatz, S. H.(2001). Exploring complex networks. Nature, 410(6825), 268. [Cited 7038 times]

[Wang2003] Wang, X. F., & Chen,G. (2003). Complex networks: small-world, scale-free and beyond. IEEECircuits and Systems Magazine, 3(1), 6-20. [Cited 1213 times]

[Alon2007] Alon, U. (2007). Network motifs:theory and experimental approaches. Nature Reviews Genetics, 8(6),450-461. [Cited 2117 times]

[Costa2007] Costa, L. D. F., Rodrigues, F. A.,Travieso, G., & Villas Boas, P. R. (2007). Characterization of complexnetworks: A survey of measurements. Advances in Physics, 56(1),167-242. [Cited 1664 times]

[West2008] West, B. J., Geneston,E. L., & Grigolini, P. (2008). Maximizing information exchange betweencomplex networks. Physics Reports, 468(1), 1-99. [Cited 152 times]

[Estrada2012] Estrada, E., Hatano,N., & Benzi, M. (2012). The physics of communicability in complexnetworks. Physics Reports, 514(3), 89-119. [Cited 131 times]

[Newman2012] Newman, M. E. J.(2012). Communities, modules and large-scale structure in networks. NaturePhysics, 8(1), 25. [Cited 424 times]

[Liu2016] Liu, Y. Y., &Barabási, A. L. (2016). Control principles of complex systems. Reviews ofModern Physics, 88(3), 035006. [Cited 38 times]

 网络上的动力学
(传播、同步、Ising模型、博弈等等)

[Nowak2006] Nowak, M. A. (2006).Five rules for the evolution of cooperation. Science, 314(5805),1560-1563. [Cited 3197 times]

[Szabo2007] Szabó, G., & Fath, G. (2007). Evolutionary games ongraphs. Physics Reports, 446(4), 97-216. [Cited 1778 times]

[Arenas2008] Arenas, A.,Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008).Synchronization in complex networks. Physics Reports, 469(3), 93-153.[Cited 2036 times]

[Castellano2009] Castellano, C., Fortunato, S.,& Loreto, V. (2009). Statistical physics of social dynamics. Reviewsof Modern Physics, 81(2), 591. [Cited 2378 times]

[Perc2010] Perc, M., & Szolnoki, A. (2010).Coevolutionary games—a mini review. BioSystems, 99(2),109-125.  [Cited 1004 times]

[Mülken2011] Mülken, O., & Blumen, A.(2011). Continuous-time quantum walks: Models for coherent transport on complexnetworks. Physics Reports, 502(2), 37-87. [Cited 157 times]

[Goutsias2013] Goutsias, J., &Jenkinson, G. (2013). Markovian dynamics on complex reactionnetworks. Physics Reports, 529(2), 199-264. [Cited 61 times]

[Pastor2015] Pastor-Satorras, R., Castellano, C., VanMieghem, P., & Vespignani, A. (2015). Epidemic processes in complexnetworks. Reviews of Modern Physics, 87(3), 925. [Cited 484 times]

[Rodrigues2016] Rodrigues, F. A.,Peron, T. K. D., Ji, P., & Kurths, J. (2016). The Kuramoto model in complexnetworks. Physics Reports, 610, 1-98. [Cited 80 times]

[Boccaletti2016] Boccaletti, S.,Almendral, J. A., Guan, S., Leyva, I., Liu, Z., Sendi?a-Nadal, I., Wang, Z.& Zou, Y. (2016). Explosive transitions in complex networks’ structure anddynamics: Percolation and synchronization. Physics Reports, 660,1-94. [Cited 9 times]

 具有不同组织方式的特殊网络
(空间、时间、多层等等)

[Barthélemy2011] Barthélemy, M. (2011). Spatialnetworks. Physics Reports, 499(1), 1-101. [Cited 1062 times]

[Holme2012] Holme, P., & Saram?ki, J. (2012).Temporal networks. Physics Reports, 519(3), 97-125. [Cited 994 times]

[Gao2012] Gao, J., Buldyrev, S. V., Stanley, H.E., & Havlin, S. (2012). Networks formed from interdependent networks. Nature Physics, 8(1), 40. [Cited 616 times]

[Malliaros2013] Malliaros, F. D.,& Vazirgiannis, M. (2013). Clustering and community detection in directednetworks: A survey. Physics Reports, 533(4), 95-142. [Cited 198 times]

[Boccaletti2014] Boccaletti, S.,Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M., Sendi?a-Nadal, I., Wang, Z. & Zanin, M. (2014). Thestructure and dynamics of multilayer networks. PhysicsReports, 544(1), 1-122. [Cited 826 times]

 网络应用
(包括在各个领域的垂直应用)

[Barabasi2004] Barabasi, A. L., & Oltvai,Z. N. (2004). Network biology: understanding the cell's functionalorganization. Nature Reviews Genetics, 5(2), 101. [Cited 6018 times]

[Borgatt2009] Borgatti, S. P., Mehra, A.,Brass, D. J., & Labianca, G. (2009). Network analysis in the socialsciences. Science, 323(5916), 892-895 [Cited 2098 times]

[Costa2011] Costa, L. D. F., Oliveira Jr, O.N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira, L., Viana,M. P. & Correa Rocha, L. E. (2011). Analyzing and modeling real-worldphenomena with complex networks: a survey of applications.Advances in Physics, 60(3), 329-412. [Cited 395 times]

[Lu2012] Lü, L., Medo, M., Yeung,C. H., Zhang, Y. C., Zhang, Z. K., & Zhou, T. (2012). Recommendersystems. Physics Reports, 519(1), 1-49. [Cited 512 times]


  网络信息挖掘
(包括结构识别、预测、排序等)


[Fortunato2010] Fortunato, S. (2010). Communitydetection in graphs. PhysicsReports, 486(3), 75-174.[Cited 5625 times]

[Lu2011] Lü, L., & Zhou, T.(2011). Link prediction in complex networks: A survey. Physica A, 390(6),1150-1170. [Cited 1037 times]

[Ermann2015] Ermann, L., Frahm, K.M., & Shepelyansky, D. L. (2015). Google matrix analysis of directednetworks. Reviews of Modern Physics, 87(4), 1261. [Cited 38 times]

[Zanin2016] Zanin, M., Papo, D., Sousa, P. A.,Menasalvas, E., Nicchi, A., Kubik, E., & Boccaletti, S. (2016). Combiningcomplex networks and data mining: why and how. Physics Reports,635, 1-44. [Cited 17 times]

[Lu2016] Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C.,& Zhou, T. (2016). Vital nodes identification in complex networks.Physics Reports,650, 1-63. [Cited 48 times]

[Zhang2016] Zhang, Z. K., Liu, C., Zhan, X. X.,Lu, X., Zhang, C. X., & Zhang, Y. C. (2016). Dynamics of informationdiffusion and its applications on complex networks. Physics Reports,651, 1-34. [Cited 10 times]

[Fortunato2016] Fortunato, S., & Hric, D. (2016). Community detectionin networks: A user guide. Physics Reports, 659, 1-44. [Cited 67 times]

[Liao2017] Liao, H., Mariani, M. S., Medo, M.,Zhang, Y. C., & Zhou, M. Y. (2017). Ranking in evolving complex networks. PhysicsReports, 689, 1-54. [Cited 0 times]

[Nguyen2017] Nguyen, H. C., Zecchina, R., &Berg, J. (2017). Inverse statistical problems: from the inverse Ising problemto data science. Advances in Physics (in press).[Cited 5 times]




有些分类也不一定没有重叠区。

比如说有些网络特征是通过动力学呈现的。

又比如社团结构是属于网络结构特征的,但是社团挖掘作为一种特殊的数据挖掘算法,更接近网络信息挖掘。

再比如Dorogovtsev在2008年的那篇RMP,绝大部分都是在说动力学临界性,但是又有一些结构的内容,所以放两个类都有道理。

有一些关联很强的综述,例如Clauset等人关于Power law的实证研究,因为不是从网络出发,所以没有选入。

实际上各个分类之间都有公共区域,分到哪里不分到哪里,也没有不容置疑的边界。
[此贴子已经被作者于2017-08-11 17:40:06编辑过]

 回到顶部